Technical articles

 

Regenerative and Resorbable PLA/HA Hybrid Construct for Tendon/Ligament Tissue Engineering

Tendon and ligament shows extremely limited endogenous regenerative capacity. Current treatments are based on the replacement and or augmentation of the injured tissue but the repaired tissue rarely achieve functionality equal to that of the preinjured tissue. To address this challenge, tissue engineering has emerged as a promising strategy. This study develops a regenerative and resorbable hybrid construct for tendon and ligament engineering. The construct is made up by a hollow poly-lactic acid braid with embedded microspheres carrying cells and an anti-adherent coating, with all the parts being made of biodegradable materials. This assembly intends to regenerate the tissue starting from the interior of the construct towards outside while it degrades. Fibroblasts cultured on poly lactic acid and hyaluronic acid microspheres for 6 h were injected into the hollow braid and the construct was cultured for 14 days. The cells thus transported into the lumen of the construct were able to migrate and adhere to the braid fibers naturally, leading to a homogeneous proliferation inside the braid. Moreover, no cells were found on the outer surface of the coating. Altogether, this study demonstrated that PLA/HA hybrid construct could be a promising material for tendon and ligament repair.

Publication date: 08/11/2019

Author: Araque-Monrós, M.C. (AIMPLAS); D. M. García-Cruz; J. L. Escobar-Ivirico; L. Gil-Santos M.; Monleón-Pradas; J. Más-Estellés

Reference: Annals of Biomedical Engineering pp 1–11

Source: Annals of Biomedical Engineering



Associated technologies